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Abstract--A linear stability analysis is performed on a deforming layered three-dimensional linear viscous 
system. The system consists of a single layer of viscosity/~ embedded in a medium of viscosity/~'. The layer is 
oriented normal to the z-axis and both the layer and medium are subjected to uniform simple shearing parallel to 
the y-axis (wrench shear) with superposed uniform shortening parallel to x and extension parallel to z 
(transpression). The stability of cylindrical perturbations of the form ~ = s~(0 cos (ax - fly) is examined. It is 
found that fold-type perturbations are unstable and pinch-and-swell disturbances are unstable in some cases. For 
the case of wrench shear alone the fastest growing buckling disturbances are oriented at 45 ° to the positive y-axis, 
while the fastest growing pinch-and-swell disturbances have positive growth rates and are oriented 90 ° to the fold 
axes. Additional shortening parallel to the x-axis (transpression) causes the fold axes to initiate at lower angles to 
the y-axis. Pinch-and-swell disturbances may or may not be unstable in transpression depending on the 
magnitude of stretching parallel to the z-axis. 

INTRODUCTION 

THEORETICAL models of fold initiation that treat rocks as 
slowly deforming viscous fluids have sought to illumi- 
nate the processes governing the development of insta- 
bilities in rocks. For the most part, these analyses 
examine two-dimensional cases of single layer folding 
(Biot 1957, 1959, 1961, 1964, Ramberg 1959, 1962, 1963, 
Treagus 1973, Smith 1975, 1977, Fletcher 1977, 1982, 
Alexander 1981, Wollkind & Alexander 1982) or multi- 
layer folding (Ramberg 1970a,b, Johnson & Pfaff 1989). 
Naturally, these models are limited in that they were not 
able to examine the effects of three-dimensional strain 
fields or the stability of three-dimensional pertur- 
bations. 

Recently, Fletcher (1991) developed a model that 
examined the stability of a layered viscous three- 
dimensional system. This model used a thick plate 
analysis of a layer in pure shear with the principal strain 
rate axes parallel and perpendicular to the plane of the 
layer. From this model Fletcher determined that the 
most unstable perturbation was a cylindrical fold-like 
form with its axis oriented normal to the direction of 
greatest shortening strain rate, except for the case where 
the bulk strain was pure constriction. Using Fletcher's 
(1991) analysis as a starting point, we consider here a 
model for folding of a three-dimensional layered system 
that examines the effect of strain fields other than pure 
shear. Specifically, this analysis points out the import- 
ance of the nature of the basic (or bulk) flow on the 
initiation of geologic structures. We seek to demonstrate 
that the basic flow has a great influence on the types, 
orientations and growth rates of geologic structures 
which form. 

As an example we study the stability of a horizontal 
layer in two scenarios, wrench shear and transpression. 
By wrench shear we refer to a horizontally directed 
distributed simple shear on vertical shear planes (San- 

derson 1982). The term transpression was first used by 
Harland (1971) in reference to the deformation caused 
by the oblique convergence of rigid plates. Sanderson & 
Marchini (1984) expanded the term to mean a zone of 
wrench (or transcurrent) shearing accompanied by hori- 
zontal shortening across the zone and vertical stretching. 
According to this usage, there is no stretch along the 
zone leading to extrusion of material at the ends. 

The most obvious geologic example of instabilities 
arising in wrench shear is the formation of en Echelon 
folds adjacent to strike-slip faults (Moody & Hill 1956, 
Wilcox et al. 1973, Harding 1974). An en Echelon array 
consists of a series of folds with roughly parallel hinge 
lines oriented at a consistent angle to the associated 
strike-slip faults (Fig. 1). Numerous natural examples of 
en Echelon fold systems are discussed by Moody & Hill 
(1956), Wilcox et al. (1973), Harding (1974), Graham 
(1978) and Little (1992), while experimental work has 
been done by Wilcox et al. (1973) and Odonne & Vialon 
(1983). Odonne & Vialon (1983) used analog models of 
simple shear to show that folds initiate with axes 
oriented close to 45 ° to the long dimension of the wrench 
zone. This observation is consistent with theoretical 
work proposing that folds initiate with axes normal to 
the axis of infinitesimal shortening in the layer (Flinn 
1962, Treagus & Treagus 1981). Model experiments by 
Wilcox et al. (1973, p. 296) using simple shear boundary 
conditions showed that this angle is always less than 45 ° 
and may consistently be about 30 ° . In naturally occur- 
ring en Echelon fold sets the angle between the hinges 
and the associated shear zone is usually less than 45 ° and 
may be less than 20 ° (Moody & Hill 1956, Wilcox et al. 

1973). 
Several explanations for this discrepancy between 

theory and observations have been proposed. First, in a 
rotational deformation such as simple shear, material 
lines will asymptotically rotate towards the shear direc- 
tion. While fold hinges will not necessarily behave as 
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Fig. 1. En 6chelon fold systems developed adjacent to wrench faults. 
(a) Folds northeast of Barisan Mountains (Semangko) fault in Sumatra 
(from Wilcox et al. 1973). (b) Folds along the San Andreas fault in 

California (from Harding 1974). 

material lines (Treagus & Treagus 1981), model work 
has shown that they will rotate in this type of defor- 
mation (Odonne & Vialon 1983). Thus, the angle be- 
tween axes of en 6chelon folds and associated faults will 
decrease with continued deformation (Sanderson & 
Marchini 1984, Ridley 1986). If this is the case. as the 
angle lessens the fold will progressively tighten as strain 
accumulates perpendicular to the fold axis (Sanderson & 
Marchini 1984, Little 1992). Sanderson & Marchini 
(1984) showed that if an en dchelon fold system initiates 
with axes at 45 ° to the associated shear zone, reduction 
of the angle to 22 ° necessitates a shear strain of), = 2 and 
shortening normal to the fold hinge of 60%. They 
concluded that since this amount of shortening is seldom 
observed in natural en 6cheion fold systems, low angles 
between fold hinges and wrench faults is not due solely 
to rotation. 

An alternative explanation is that en 6cheion fold 
systems initiate with hinges at lower angles to the shear 
plane due to transpression. This possibility has been 
treated theoretically by Sanderson & Marchini (1984), 
McCoss (1986) and Treagus & Treagus (1992). Sander- 
son & Marchini (t984) showed that additional shorten- 
ing across a zone of wrench shear increases the angle 
between the minimum infinitesimal stretching direction 
and the shear plane; it follows that any folds will initiate 
at a lower angle to the zone boundaries. McCoss (1986) 
used a geometrical method to determine the orientation 
of the incremental shortening direction with respect to 
the boundaries of a transpressional zone: this method 
also demonstrated that added shortening increases the 
angle between incremental shortening and the shear 
plane. 

With this work as motivation, we seek to demonstrate 

z t 
z = -  h(t) ~ 1 /  1~ 

X 

Fig. 2. The basic system examined in this paper. The layer has 
interfaces at z = +_h(t). The layer and medium are undergoing shear 
parallel to the y-z plane with the shear direction parallel to y. 
Superimposed on this is a pure shearing with the axis of maximum 
shortening parallel to x and axis of maximum stretching parallel to z. 

the connection between the type of flow in the layer and 
the orientation of the resulting instabilities with the 
maximum growth rate A linear stability analysis (which 
is limited to the onset of instabilities) is well suited to 
determining the initial orientation of fold axes in a 
wrench or transpressional deformation. Additionally, 
we point out that the theoretical studies mentioned 
above (e.g. Flinn 1962. Treagus & Treagus 1981. San- 
derson & Marchini 1984, McCoss 1986) determine the 
orientations of fold axes by assuming that folds initiate 
with hinges at right angles to the infinitesimal shortening 
direction. While this may seem obvious, we rigorously 
test this assumption in a rotational deformation. 

ONSET OF INSTABILITY IN A THREE- 
DIMENSIONAL LAYERED MEDIAN DURING 

TRANSPRESSIONAL DEFORMATION 

Development of the model 

To model a wrench- or transpressional-type defor- 
mation, we choose a co-ordinate system (x, y, z) consist- 
ent with the geologic characteristics of such zones: 
namely, a zone of deformation bounded by steeply 
dipping faults or shear zones (Sanderson & Marchini 
1984). We choose the co-ordinates so that x is horizontal 
and perpendicular to the length of the zone. z is vertical. 
and y is parallel to the length of the zone. 

A fluid system consisting of a single horizontal layer of 
fluid of thickness n (in dimensional variables) embed- 
ded in a less viscous medium is assumed to occupy the 
three-dimensional region described by our Cartesian 
system (Fig. 2). The mean position of the middle of the 
layer is at z = 0, and the mean positions of the interfaces 
are initially located at +h(t) (in dimensionless vari- 
ables), while perturbations from these mean positions 
are represented by ~(x, y, tl. We assume that the fluids 
are Newtonian with the viscosity of the layer denoted by 
~ and the upper and lower medium by /g .  Since quan- 
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tities associated with the layer are used for non- 
dimensionalization our assumption that the layer is 
more competent than its surroundings implies that the 
viscosity ratio r =/~'//~ < 1. 

We use a linear stability analysis to determine the 
stability of the competent layer in the basic flow and to 
determine the orientation of any structures that result 
from instability. The governing equations of motion and 
the relevant interfacial conditions are given in the 
Appendix, as are most of the mathematical details. This 
technique follows the work of Ramberg (1959, 1963), 
Biot (1961, 1964), Smith (1975), Fletcher (1977, 1991) 
and others. Fletcher (1991) examined the three- 
dimensional stability of a viscous layer parallel to the x-y 
plane with the principal shortening direction parallel to 
x, the principal axis of extension parallel to z, and the 
axis of intermediate strain (either shortening or exten- 
sion) parallel to y. Our analysis is similar to Fletcher's 
(1991) analysis; however, we examine the development 
of instabilities in a rotational deformation, whereas 
Fletcher examined an irrotational deformation with no 
component of shear strain parallel or perpendicular to 
the layer. It is also similar to the work of Benjamin & 
Mullin (1988), who examined the stability of a horizon- 
tal layer in what was effectively wrench shear. However, 
their analysis had an unconfined upper surface and was 
stress free at the lower interface. We also consider the 
stability of a pinch-and-swell disturbance since this type 
of structure is particularly sensitive to the basic flow. 

Fletcher (1991) analyzed the fate of perturbations in 
the shape of the interface of the form ~ = ,~(t) cos (Ix) 
cos (my). From this analysis he concluded that a cylindri- 
cal disturbance is the most unstable disturbance; conse- 
quently we will examine the stability of a cylindrical 
disturbance of the form ~ = ,~(t) cos (ax - fly). 
Although surface examples of en 6chelon folds tend to 
be doubly-plunging we use cylindrical geometry as a first 
approximation to an en 6chelon fold array. The angle, 0, 
between the fold axis and the y-axis is t an- l  (fl/a). 

There are important differences between the geologic 
situations discussed previously and our simplistic model. 
The en 6chelon folds discussed earlier are generally (but 
not always) near-surface (or at-surface) phenomena, 
implying that there is no overlying medium and conse- 
quently the upper surface supports no shear stress. In 
contrast, our model has an overlying viscous medium 
which is appropriate for layers at some depth in the 
crust. In addition, while gravity may have an effect on 
growth rates, it has no effect on the orientation of 
horizontal structures and we neglect it in our model. We 
want to emphasize that surface wrench faulting or trans- 
pression is not the only environment where this type of 
strain is encountered. A wrench-type straining may 
occur at deeper levels in the crust; examples of wrench 
shear at lateral tips or ramps in thrust zones have been 
given (Coward & Potts 1983). Also, deformation at 
deeper levels in orogenic zones with significant com- 
ponents of wrench shear have been documented by Brun 
& Burg (1982) and Ridley (1986). Of course, a signifi- 
cant component of a wrench-type shear may occur 

within layers in shear zones if the layering is oriented 
obliquely to the shear plane and the intersection be- 
tween layering and the shear plane is parallel to the 
length of the zone. 

Basic flow associated with transpression 

We require a basic flow that satisfies the criteria given 
above in terms of being a suitable model for deformation 
associated with wrench shear and transpression. From 
our choice of coordinates the determination of the basic 
flow is straightforward, consisting of shearing parallel to 
the y-axis, shortening parallel to x (perpendicular to the 
shear plane) and extension parallel to z (Fig. 2). Accord- 
ing to Sanderson & Marchini (1984) and McCoss (1986) 
in a transpressional deformation no material is extruded 
or intruded from the ends of the zone, so the pure shear 
component of the deformation has no stretching (or 
shortening) parallel to the length of the zone. Although 
there are known examples of orogenic belts with large 
amounts of horizontal extension parallel to the length of 
the belt (Ellis & Watkinson 1987), we know of no work 
specifically documenting a large additional component 
of stretching (or shortening) parallel to the length of a 
transpressional zone. Should this latter scenario be con- 
sidered transpression? In any case, it seems possible that 
this type of strain may occur on smaller scales and for 
generality our model allows for a pure shear component 
of stretching parallel to y. Most of our examples dis- 
cussed later set this component to zero, although we also 
give an example with extension parallel to y. 

The basic flow is denoted by v 0 = (uo, v0, w0) and the 
strain rates parallel to x, y and z may be written as Dxx, 
Dyy and /)zz, respectively, and the shear strain rate 
parallel to y is Syx (the overbars denote dimensional 
quantities). We then define appropriate dimensionless 
strain rates as dii = Dii/-e for i = x, y and z (no sum on i) 
and Syx = Syx [-~. The term 1/~ is the scale factor for time 
given by ~ = (D:D) 1/2, where D is the rate-of-strain 
tensor of the imposed deformation. For constant dxx, 
dyy, dz~ and syx we then have dxx < 0, d~z > 0 and dxx < 
dyy < dzz. 

The basic velocity distribution for this deformation 
may be written as: 

v0(x, y, z) = % = v~ = (dxxx, dyyy + SyxX, d=z), (1) 

where a prime indicates a quantity associated with the 
upper medium, a double prime indicates a quantity 
associated with the lower medium, and no subscript 
indicates a quantity associated with the layer. The veloc- 
ity gradients tensor is: 

l xx o Oo) 
 v:ISyox dz z 

with pure shear and simple shear components: 

VVps = / 0 dyy and Vvss = 0 

0 dzz 0 

(2) 

(3) 
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respectively. This velocity distribution is an exact solu- 
tion to the governing system of equations (A3)-(A5) 
and satisfies the interracial conditions (A6) for planar 
interfaces. 

Stability analysis 

The purpose of this analysis is to determine how the 
shape of the layer evolves with time, i.e. if folds and/or 
pinch-and-swell structures (boudins) develop. To this 
end, it is the stability or instability of the viscous layer in 
the basic flow that will be considered in the analysis. This 
is accomplished through use of a linear stability analysis 
to determine the fate of infinitesimal perturbations in 
the shape of the layer. A perturbation may be defined as 
infinitesimal when the deviation of an interface from a 
planar shape 6 is very small in comparison with the 
thickness of the layer H, i.e. e = 6/Ft << 1. These small 
variations in the shape of the interfaces result in slight 
perturbations of the basic velocity field. Because the 
perturbations are small the total flow may be separated 
as  

V = V 0 + EV 1 + 0 ( 6 2 ) ,  (4 )  

where ev 1 + O(e 2) is the flow generated from the 
instability. Since e << 1, higher order terms of e (i.e. 
O(e2)) are neglected to make the analysis linear. It is 
assumed that perturbations with all orientations in the 
horizontal plane are present--all, however, are infini- 
tesimal. The disturbance flow must satisfy the governing 
system of equations (A3)-(A5) and the interfacial con- 
ditions (A6) independently of the basic flow. 

As discussed above, we examine the stability of the 
layer to cylindrical fold-like perturbations of the form 
~(x, y, t) = M(t) cos (ax - f ly) ,  where ~(t)  is the 
amplitude of the disturbance and ~ is of order e. Because 
the interface is a material surface of discontinuity lines of 
equal phase (e.g. fold hinges) will deform in the basic 
flow; consequently the (dimensional) wavenumbers a 
and fl are functions of time. Although long-term effects 
are beyond the scope of this linear analysis, satisfaction 
of the kinematic boundary condition (A6a) requires 
proper formulation of the time-dependent effects of the 
wavenumbers. For the purposes of this analysis we 
assume that the fold hinges behave as material lines. 
Thus, perturbations are described by solutions of the 
form: 

~(x, y ,  t) = ,~/(t) cos (a l x  - f l(y - Sxt))  

= .~(t) cos (az  - f ly) ,  ( 5 )  

where 

a = a l + fiSt. (6) 

Equation (5) describes a surface with periodic cylin- 
drical fold-like forms with lines of constant phase at an 
angle 0 to the y-axis. The wavenumbers a and 13 are 
parallel to x and y, respectively, and ~o is the wave- 
number perpendicular to the wave crests, so ~o 2 = a 2 + 
f12 > 0 (Benjamin & Mullin 1988). The angle between o~ 
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Fig. 3. Lines of constant phase (e.g. fold hinges) in the x-y plane. 
Wave vectors a and fl (parallel to the x- and y-axes, respectively) and 
the resultant ~o (equal to " ¢ / ~  and perpendicular to the lines of 
constant phase) are shown. 0 is the angle between ~o and the x-axis (as 
well as the lines of constant phase and the y-axis). The shear com- 
ponent of the basic flow will cause the lines to rotate from the positions 
shown by solid lines, while the shortening component will cause the 
lines to move closer together with time. The amount of rotation shown 

is grossly exaggerated. After Benjamin & Multin (1988); 

and the x-axis (0) is tan-~ (i l ia).  Figure 3 shows these 
relationships, where lines of constant phase (such as fold 
hinges) initially at some arbitrary angle to the shear 
plane will rotate from their initial positions, shown by 
the solid lines, to positions shown by the dashed lines 
(the amount of rotation is grossly exaggerated) after 
some time t. 

The fundamental purpose of a stability analysis is 
to determine how the amplitude of the disturbances, 
,~i, changes with time, i.e. to determine the value of 
dsl( t ) /dt .  The system of equation (A26) resulting from 
the stability analysis represents an eigenvalue problem 
for the quantity [1/~ d,~/dt]. Solution of this system 
results in the secular relation: 

dg/ 
dt 

(1 - r)(k2dzz - 12dxx - m2dyy + lmsv~) 1 
= ,~i d ~  + k ( k ( r 2 ,  '1) + (1 + r e) sinh k + 2r cosh k))" 

We may write this as: 

¢7) 

d ~  
- a l ~ ,  (8) 

dt 

where al is the growth rate: 

(1 - r)(k2d= - 12dxx - m2dry + lmsrx ) 
aj = d~z + k(k(r2  _ 1) + (1 + r e) sinh k + 2r cosh k) '  

(9) 

k = 2oJh = 2er/2H is the dimensionless wavenumber of 
the disturbance associated with the dimensionless wave- 
length 2/H,  and l and m are the dimensionless wave- 
numbers parallel to the x-axis and y-axis given by ah and 
fih, respectively. Note that k 2 = 12 + m 2. 

Because the system of basic equations (A3)-(A5) and 
interracial conditions (A6) are valid only for infinitesi- 
mal perturbations, our analysis is restricted to a suf- 
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ficiently small period in dimensional time that changes in 
and H are negligible relative to the scale factor for 

time, 1/V. Therefore, at the onset of instability k may be 
treated as a constant, and we adopt the criteria whereby 
the instability, stability, or neutral stability of the layer 
to buckling is determined by whether al is positive, 
negative, or zero, respectively, for all time t. We there- 
fore treat at as the instantaneous growth rate of a 
buckling disturbance. The secular relation (7) is a more 
generalized form of Fletcher's (1991) equation (29) since 
it includes the effects of wrench shear on the system; this 
is represented by the term lmsyx. 

Pinch-and-swell  mode  

A full description of the evolution of the shape of the 
layer also requires consideration of the symmetric pinch- 
and-swell mode of instability. A similar analysis (see the 
Appendix) for a symmetric pinch-and-swell pertur- 
bation yields the growth rate b I of a pinch-and-swell 
disturbance: 

(1 - r)(k2d= - 12dxx - m2dyy + lmsyx) 
bl -- d= - k(k(r2 _ 1) + (1 + r E) sinh k + 2r cosh k)" 

(10) 

Here b 1 is the growth rate for a symmetric disturbance: 

~(x, y, t) = I ~ ( t )  cos (ax - fly). (11) 

Again, since we are limited to the onset of instability 
we adopt a stability criteria similar to that discussed 
above where the stability, neutral stability, or instability 
of a pinch-and-swell disturbance is indicated by bl < 0, 
bt = 0, or bl > 0, respectively. 

DISCUSSION 

For all values of I and m > 0 and values of r < 1, a~ is 
positive and the layer is identically unstable to fold-type 
perturbations. Since there is no critical value where a I is 
positive for only a single value of k, we will characterize 
the wavelength of the resulting instability by the classical 
method of determining which wavenumber has the 
largest growth rate (Drazin & Reed 1981). Thus the 
dominant wavenumber is given by the relation: 

Oat _ Oa~ _ O. (12) 
Ol Om 

By solving this relation numerically a graph of the 
dominant wavelength-to-thickness ratio may be plotted 
as a function of the viscosity ratio r (Fig. 4). The 
dominant wavenumber is independent of the strain 
parameters dxx, d y y ,  dzz and Syx, and is only a function of 
the viscosity ratio r and is in fact the same as those 
reported by Smith (1975) and Fletcher (1977, 1991) and 
for two- and three-dimensional cases. This latter result is 
not surprising since our results must reduce to the 
appropriate two- and three-dimensional results given 

100 
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Fig. 4. Graph of the dominant wavelength-to-thickness ratios for a 
buckling disturbance at the onset of instability as a function of the 

viscosity ratio r. 

the proper strain parameters. We now turn to our main 
focus, the orientation of the resulting structures. 

We want to determine the orientation of the disturb- 
ances with the maximum growth rate. Using equation 
(12) above to find the maximum of al as a function of l 
and m, the orientation (0) of the dominant wavelength is 
found using 0 = tan -1 (re~l). Figure 5 shows contour 
plots of the instantaneous growth rate at vs wave- 
numbers l (ordinate) and m (abscissa) for four specific 
cases: Fig. 5(a) is for wrench shear alone (dxx = dyy = d= 
= 0 and Syz = X/2); Fig. 5(b) shows al for transpression 
where the rate of shortening parallel to x (due to the 
pure shear component of the deformation) is half that of 
the rate of shear parallel to y (dzz = -d~x  = 1/2Syx); Fig. 
5(c) shows al for transpression with rate of shortening 
equal to the rate of shear (d~z = -dxx  = Syx)',  Fig. 5(d) 
shows an example where the pure shear component of 
the deformation has the axis of shortening parallel to x 
and extension parallel to y, not z (dyy = -dx~ = syx). This 
last example is not true transpression, but since this type 
of strain may occur on a smaller scale we include an 
example of it here. From these plots the values o fm and 1 
corresponding to the maxima of al may easily be read 
off; for example, in Fig. 5(b) l = 0.323 and m = 0.199 so 
tan-1 (0.199/0.323) ~ 32 °. The maxima in Figs. 5(a), (c) 
& (d) correspond to the initiation of fold hinges at 
approximately 45 °, 23 ° and 13 ° to the y-axis, respect- 
ively. This will be discussed further below. 

When Syx ~ 0 and dxx = dyy = d~z = 0, the layer is 
identically unstable to pinch-and-swell perturbations for 
all values of I > 0 and m < 0 and values of r < 1. As 
before, since there is no critical value where b~ is positive 
for only a single value of k, we characterize the wave- 
length of the resulting instability according to which 
wavenumber has the largest growth rate. Figure 5(e) 
shows a contour plot of bl, vs wavenumbers I and m for 
wrench shear (dxx = dyy = dzz = 0 and sy x = X/2). The  
maximum in this plot corresponds to the formation of 
boudin hinges at 135 ° to the positive y-axis. 

Folds and boudinage in wrench shear 

For wrench shear the parameters used are dxx = dyy = 
dzz = 0 and Syx = X/2. In this case the axes of the buckling 
disturbance with the maximum growth rate are initially 
oriented at 45 ° to the shear plane (Fig. 5a), which is 
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ing equal to the rate of shear (dzz  = - d~x = s~. x ) .  (d )  Plot of a~ for axis of shortening parallel to x and extension parallel to y ,  
not z (d~,. = - d ~  = s ~ ) .  (e )  Plot of b~ for a pinch-and-swell disturbance in wrench shear (d, .  i = d,.y = dz: = 0 and 
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normal to the minimum infinitesimal stretching direc- 
tion in the layer. Additionally, the axes are initially 
parallel to the maximum infinitesimal stretching direc- 
tion and thus some component  of  extension parallel to 
the fold axes will occur. 

The extensional strain is responsible for the instability 
of  pinch-and-swell disturbances in the layer, which have 
axes oriented at 135 ° to the positive y-axis (at right 
angles to the fold axes). The dimensionless growth rates 
for pinch-and-swell instabilities are much smaller (of  the 
order of 0.33 for r = 0.01) than the dimensionless growth 
rates for fold-type disturbances (8.7) and growth of 
these disturbances may be weak.  

Folding and boudinage in transpression 

Recalling that for d.,.x < 0, d= > 0 and Svx ~ 0. the 
deformation falls within the definition of  transpression 
discussed earlier. Figure 6 shows the angle 0 as a func- 

tion of the ratio of  shortening (dxx) to shear (Syz) for the 
two cases of  dxx = - d =  and d~x = -dvv.  The angle of  
initiation is independent of  the competence  contrast. As  
the ratio of  shortening to shear increases the angle 
between the fold hinges and the y-axis decreases: in 
other words,  transpression will cause the fold axes to 
initiate at less than 45 ° to the shear direction. The 
buckles do initiate with axes normal to the minimum 
infinitesimal stretching direction in the layer, and our 
results confirm the prevailing vtews in the literature 
(Flinn 1962. Treagus & Treagus 1981. Sanderson & 
Marchini 1984. McCoss 1986). It is worth noting that in 
the case where dr: = 0 (no vertical extension) and dyy > 
0, folds initiate with axes at much lower angles to the 
shear plane: for example,  if the rate of  shortening is 
equal to the rate of  shear ([d.~x/S,,~. = 1) and all extension 
is parallel toy. folds will nucleate at 13°: if all extension is 
parallel to z. folds will nucleate at 23 °. 

Figure 7 shows the growth rate a~ as a function of the 
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ratio of shortening, dxx, to shear, Sex, for dxx = - d =  and 
r = 0.1, 0.01 and 0.001. The growth rates of fold-type 
disturbances in wrench shear are relatively low in com- 
parison to those where there is extension parallel to z; as 
d~z increases the growth rate increases significantly due 
to the added kinematic growth effects. For example, for 
a viscosity ratio of 0.01 (layer 100 times more viscous 
than the medium) the non-dimensionalized growth rate 
is approximately 8.7 for wrench shear (at the y- 
intercept), whereas it is over 18 for a two-dimensional 
case with shortening parallel to the layer and extension 
normal to the layer. As d= increases relative to Sy~, the 
growth rate asymptotically approaches this latter value. 
This theoretical result is borne out by the model experi- 
ments of Wilcox et al. (1973) where small angles of 
convergence resulted in much more pronounced fold 
growth than wrench shear alone. We note that the strain 
distribution in a folded rock will be different if the folds 
formed in a wrench shear environment (due to lower 
amplification rates) than if they formed in a situation 
where extension occurred normal to the layer. 

The growth rate bx for pinch-and-swell structures 
decreases as dz~ increases since the basic flow opposes 
the growth of the instability (Smith 1975). We empha- 
size, however, that in wrench shear and for small values 
of d=/syx that the growth rate is greater than zero and 
these disturbances are unstable. This is due to the fact 
that with dzz sufficiently small, the dynamic growth rate 
is larger than the opposing kinematic deamplification. 
When dz~ = 0 there are, of course, no competing 
kinematic effects. Smith (1975, 1977) found that the 
growth rates of pinch-and-swell structures in a two- 
dimensional deformation were negative and concluded 
that such structures would not grow in layered Newto- 
nian fluids. Smith (1977) invoked non-Newtonian 
(specifically strain-rate softening) behavior as a con- 
dition for the growth of pinch-and-swell structures. Our 
analysis shows that these structures can develop in 
layered Newtonian fluids due to three-dimensional 
effects and are thus not proof of non-Newtonian behav- 
ior. We note further that the instability of pinch-and- 
swell structures does not require a component of simple 
shear. In the case where there is no wrench shear (Sy~ = 
0) and the layer is subjected to pure shear with extension 
parallel to y, pinch-and-swell disturbances with axes 
parallel to x are unstable. The full three-dimensional 
geometry of the deformation must be taken into account 
when examining geologic structures! 

Extensional features parallel to fold hinges have been 
documented in en 6chelon fold systems by Little (1992). 
Pinch-and-swell structures have not yet been specifically 
documented in natural en 6chelon occurrences, nor have 
they been documented in experimental work (Wilcox et 
al. 1973, Brun & Burg 1982, Odonne & Vialon 1983, 
Coward & Potts 1984, Ridley 1986). However, both 
conjugate fault sets and tension gashes at high angles to 
the fold hinges are commonly reported by workers 
studying natural en 6chelon fold systems. Similar struc- 
tures were reported in the model experiments by Wilcox 
et al. (1973), p. 304), who reported that tension gashes 

cross the en 6chelon fold axes at right angles. The 
presence of these structures rather than boudinage may 
result from the rheologic behavior of upper crustal rocks 
and the materials used in modeling experiments, which 
tend to behave in a brittle fashion during extension. In 
some environments, such as within ductile shear zones, 
it seems possible that boudins may form if layering is 
oriented such that the layer undergoes a sufficient de- 
gree of wrench strain. 

Comments  on finite growth effects 

A topic of current interest is the behavior of fold axes 
in a rotational deformation such as transpression. While 
this analysis cannot make quantitative predictions on the 
long-term development of finite amplitude folds, we 
discuss some qualitative aspects of fold rotation from the 
perspective of this analysis. There are two general 
models of the behavior of fold hinges in a rotational 
deformation. The first assumes that fold hinges, after 
initiation, behave passively and simply rotate as material 
lines in the flow (Flinn 1962, Sanderson & Marchini 
1984). The second model assumes that fold hinges re- 
main perpendicular to the axis of maximum finite short- 
ening in the layer (Treagus & Treagus 1981, 1992). 
Treagus & Treagus (1981) make the argument, which we 
believe to be valid, that the effects of competence 
contrasts do not suddenly vanish after folds initiate. 
They argue further that any 'increment' of buckling is 
perpendicular to the incremental shortening direction in 
the layer (what constitutes an increment of buckling is 
not specified). Thus, each successive increment of buck- 
ling is oblique (by a small angle) to the previous incre- 
ment and the resulting finite amplitude fold is the sum of 
all the non-coaxial increments, with an axis perpendicu- 
lar to the axis of maximum finite shortening in the layer. 
In this model it is necessary that the fold hinge under- 
goes some degree of migration (Treagus & Treagus 
1981, 1992). 

While we believe this to be a better model of fold 
development in a rotational system than one which 
assumes only passive rotation, there are several possible 
effects it ignores. First, leaving aside the question of 
when an infinitesimal fold can be considered finite in 
amplitude, the growing fold will modify the basic flow in 
some local area by its presence. One effect of this 
modification may be a 'bending' of the streamlines in the 
neighborhood of the fold, resulting in a local rotation of 
the principal axis of infinitesimal shortening. Conse- 
quently each following increment of buckling, while 
perpendicular to the local incremental shortening direc- 
tion, may not be perpendicular to the overall, or 'aver- 
age', incremental shortening direction in the layer. This 
'corrugation effect' of the fold hinges (Troitsky 1976) 
may result in an anisotropy that causes partitioning of 
strain with components of shortening normal to fold 
hinges and shearing parallel to the fold hinges (Goguel 
1962, Cobbold & Watkinson 1981, Watkinson & Cob- 
bold 1981). Second, since the interaction of each incre- 
ment of folding with a finite amplitude fold is a non- 
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linear process the addition of each increment is not 
straightforward. 

A non-linear analysis that examines the effects of the 
higher-order terms neglected in this analysis is necessary 
to determine the consequences of these effects. A non- 
linear analysis along the lines of the classic work of 
Stuart (1960) and Watson (1960) (a weakly non-linear 
stability analysis) may not be applicable to this model, 
however. An analysis of their type makes the necessary 
assumption that only a single unstable wavenumber (the 
critical wavenumber) becomes unstable at some point, 
instead of the continuous and virtually infinite spectrum 
of unstable wavenumbers present in this analysis. 
Furthermore, an analysis of this type requires that the 
growth rate of the disturbance, al, be sufficiently close to 
the curve of marginal stability so that al is of the order 
O(e 2) (i.e. 0 < a] << 1) to ensure that an asymptotic 
expansion of the amplitude equation resulting from the 
kinematic boundary condition (A6a) is both valid and 
appropriate. Since there is no state of marginal stability 
in this problem (except for the uninteresting case of no 
deformation) and at >> 1, other approaches must be 
examined (Drazin & Reid 1981, p. 378). 

Experimental models will undoubtedly be of benefit 
in understanding these processes. Unfortunately, as 
pointed out by Treagus & Treagus (1992) the angular 
difference between the axis of finite extension in a layer 
undergoing shearing and the material line parallel to the 
initial axis of buckling may be only 1 ° or 2 °. The model 
work of Odonne & Vialon (1983) had a spread of 15-20 ° 
of the orientation of the initial fold hinges. Furthermore, 
an infinitesimal amplitude fold is difficult to see, making 
determination of the initial axial orientations difficult. 
Nonetheless, many important questions may be ans- 
wered. Numerical models, such as those using finite 
elements, will also undoubtedly be helpful in answering 
some of these questions. 

CONCLUSIONS 

The main results of this analysis are as follows. 
(1) In a rotational deformation, folds initiate with axes 

normal to the minimum infinitesimal stretching direc- 
tion in the layer. In wrench shear the fastest growing 
buckling disturbances form with axes at 45 ° to the shear 
direction. Disturbances with axes at 90 ° to the fold 
hinges are also unstable. The formation of pinch-and- 
swell structures does not require non-Newtonian behav- 
ior. Transpression, resulting from an added component 
of shortening normal to the shear plane, causes folds to 
initiate at a smaller angle to the shear plane and also 
results in larger growth rates of folding instabilities. This 
angle is only a function of the relative magnitudes of the 
principal strain rates and is not a function of the viscosity 
of the layer. 

(2) The bulk strain of a deforming system exerts a 
strong controlling influence on not only the orientation 
of the dominant structures, but also on the type of 
structures which are produced. To date it has been 

assumed that the principal governing factors for the 
initiation of folds or boudins in layered rocks is the 
competence contrast between the layer and medium and 
whether the strain is layer parallel shortening or exten- 
sion. This analysis shows that the bulk flow is an addi- 
tional important variable. 
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APPENDIX 

Governing equations and interracial conditions 

The general problem requires determination of the stability of a 
fluid that is stratified by viscosity and is immiscible. The fluids are 
assumed to be Newtonian and interfacial forces and density differ- 
ences between the layers are ignored. The system consists of a single 
horizontal layer of a viscous fluid of thickness z0 (in dimensional 
variables) embedded in a less viscous medium with the interfaces of the 
layer perpendicular to the z-axis. The mean positions of the interfaces 
are located a t +_h(t) (in dimensionless variables) while deviations from 
these mean positions are represented by ¢(x, y, t). Additionally, v = 
v(x, y, z, t) = (u, v, w) are the velocity components, p -- p(x, y, z, t) = 
p* + pogz is the reduced pressure where p* is the total pressure,/~ 
viscosity coefficient, ~dp0 --- v ~ kinematic viscosity, and g --- acceler- 
ation due to gravity. The bulk quantities of the upper and lower fluid 
region are denoted by a primed and double primed superscript, 
respectively, while those of the layer have no superscript. 

All independent and dependent variables are considered in dimen- 
sionless form, and H, l/g, ~ ' H , / ~  and 6 are the scale factors for 
distance, time, velocity, pressure and deviation of the interface from 
its mean position, respectively. Additionally, the following dimension- 
less parameters are used for the deviation of the interface from a plane 
and the viscosity ratio: 

r =l~' , (A1) e=~,  

respectively. The equation for the position of the interfaces may then 
be written as: 

l i t  z = +h(t) + e~(x, y, t), where lira ¢(x, y, t)dx = 0. 
I ~  -~  - I  

(A2) 

In dimensionless variables, the governing Navier-Stokes equations 
of motion for a quasi-static, isotropic, isothermal single phase fluid of 

constant density in the upper medium, layer, and lower medium are, 
respectively: 

V. v' = O, -Vp '  +/~V2v ' = 0 (A3a-d) 

V. v = 0, -Vp + pV2v = 0. (A4a-d) 

V- v" = 0, -Vp" + ~,/'tV2V" ~-- 0. (A5a-d) 

For z = h(t) + e~(x, y, t) (at the upper interface), the following 
conditions apply: 

Oh + e (~--~ + u ~ + v ~-~1 (A6a) 
w = 0-'7 \at ax Oy] 

w ' - e u ' O ~ - e v ' O ¢ -  _ O~ 
ax ~ - w ~u ~x - ~v °oy (A6b) 

, w ,  

- e  ex+eZOy y -p '+2a ' [  ox ~x+ ~oy ox / ~Ay -ffz + 

t Wr [Ov' Ow ~ +0 ] / .1  
_ lTz + + + 

ow k 0 } /  2 2 2 ~Oz Oy] y + (1 + d~x + e ~Sy) (A6c) 

2~ , [_eOu '~_  l[Ou' Ov'\. l[Ou' Ow\ 
t x + 

t Wr t 21/Ov + 0  \ aw . ] 

_ [ O u .  l [ O u  8v~ l [ O u  O~xx) 

 21(o  owl¢ ow¢l 
- ~ z  + ay] • ~ + ~  oz ~l (A6d) 

2#'{-e3 ' l (Ou' + Ov']: :2 - e21fOu' + ~x ):~:y 
Ox ,x,y 2 ~ Oy Ox ] x y 2~,Oz 
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( l+dex~) 2~Oz "~-x) ;xcSy- 2~Oz Oy} c~z YJ 
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l[Ou+Ow~.~ l/Ou Ov\ e ~v ~r(1 + e2~2 ) 21~Z -O'Xx)gX'Y--E 2t~y+ ~X) ~x(l + E2~x2) - y 

1 Ov Ow _e21l~u+Ow]¢~ 
+ 2(~z + ~--~) (1+ ezra) 2,Oz Ox] x '  

ow/¢2 
- 2 ~#z by] y + e Oz YJ (A6e) 

u' + w'e¢x = u + we~x (A6f) 

-d"'~Ar + v'(1 + d¢~) + ~'(~) 
= -e2u~¢y + v(1 + ez¢~) + ew(¢y). (A6g) 

An equivalent set of interfacial conditions at z = -h(t)  + e~(x, y, t) 
may also be written with primed quantities replaced by their double- 
primed equivalents. 

Because the interfaces are material surfaces of discontinuity, the 
kinematic boundary condition (A6a) ensures that the interfaces have 
the same instantaneous velocity as the adjacent fluid. This interfacial 
condition is critical to determining the stability of the interface since it 
determines the evolution of the shape of the interface with time. 
Equation (A6b) represents the balance of normal velocity across the 
interface. Equation (A6c) arises from the normal component of 
momentum balance and represents balance of normal stress across the 
interface, while (A6d) and (A6e) represent balance of shear stress in 

5G 16:6-I 
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two orthogonal directions tangent  to the surface, originating from the 
tangential component  of momen t um balance. Finally, (A6f) and 
(A6g) arc adherence conditions that guarantee no relative tangential 
motion (i.e. welded interfaces) in two orthogonal directions tangent  to 
the interface (for further details, see Alexander  1981, Wollkind & 
Alexander  1982). 

Using the basic velocity distribution given by equation (1) in the 
text, we consider perturbation solutions to the basic system of 
equations of the form of equation (4) in the text: 

~'~(x, y .  t) = 0 + t:tg, l (x  y ,  t) + O ( e  2) (A7a) 

u(x ,  y ,  z, t) = d ~ x  + c u t ( x ,  y ,  z, t) + O(~ ~) (A7b) 

v ( x , y , z , t ) = d , , , y + s ~ , ~ x + e v l ( x , y , z , t ) + O ( ~  "2) (A7c) 

w ( x , y , z , t ) = d z = z + t w l ( x , y , z , t ) + O ( e  2) (A7d) 

p ( x , y , z , t ) = p . ( x . y , z , t ) + e p l ( x , y , z , t ) + O ( ~ ' 2 ) .  (A7e) 

with equivalent expansions for primed and double primed quantities. 
Substitution of the solution (A7) into the basic system of equations 

(A3)- (A5)  and the interfacial conditions (A6) and expansion of the 
interfacial conditions in a Taylor series about z = h( t )  yields a series of 
equations in power of ~:. For our analysis, we examine terms of O(e) 
and neglect terms of 00-2). After  cancellation of the common factor 
we obtain the following system of linear perturbation equations for 
z > h,  h < z < - h  and z < - h ,  respectively: 

V • v I = II, - V p l  + IdV2vl = 0 (A8a-d)  

V - v t = 0. -Vp l  + ktV2v] = 0 (A9a-d)  

V - v'i = t). -Vp'~ +/~ V~vl = 0 .  (A 10a-d) 

For z = h( t )  + ~:~(x. y. t): 

0~ aC a~ 
wl + e , , ~  = ~ ~ + x e , . ~ + ( v e v ~ , + x s v O  " w i = w  I ( A l i a , b )  

- at &v " " ~v" 

- P ]  + 2r(OWi~az/= - P i  + 2"(~z 1)' ( A l l c )  

r~ -2e , ,~7 , -  s,.,~., + ( O u i +  Owi'i + 2e_g, l  
l " " ~ az ax ] j 

{ ' = - 2 G ~ 2 ' - s " ~ " + ( O u l + O w l l t  Oz ~ x !  + 2e~z_~! ( a l l d )  

+ ?<-"<i+ 2e<i 
"i ~ az ay ¢ " -  

{ avl  3wl' 2e_-:~,,} ( A l l e )  

u I = u t, v i = v t. (A l l f , g )  

For z = - h ( t )  + e~(x, y, t) (at the lower interface) an equivalent set of 
conditions may also be written. 

Consistent with the work of Blot (1964), Smith (1975), Fletcher 
(1977, 199l) and Wotlkind & Alexander  (1982) we adopt a modified 
normal mode solution to the system of equations (A8) - (A 11 ). Follow- 
ing Benjamin & Mullin (1988), we consider perturbation solutions 
given by equations (5) and (6) in the text. [Benjamin & Mullin (1988) 
considered perturbation velocities of the form: 

v = V(k;z) cos l a x  - f l y ) .  

where there is no explicit dependence of the perturbation velocities on 
the amplitude.[ The solutions for the velocities and pressures take the 
form: 

[ w l , p t ] ( x ,  y ,  z ,  t) = [ W , P ] ( z ; a , f l ) , ~ ( t )  cos l ax  - f ly )  (A12a,b) 

[ul,v j ](x, 3,, z, t) = [ U , V ] ( z ; a , f l ) a t ( t )  sin lax  - f l y ) ,  (A12c,d) 

with analogous expansions for primed and unprimed quantities. 
To satisfy the two additional boundary conditions of the three- 

dimensional problem, Fletcher (1991) derived a second independent  
velocity field, termed the toroidal velocity field, given by: 

(u,,v,,w,) 
= 0~(z;a./3)(-a,~(t) sin (¢tx - f ly)) ,  -t~(z; a,f l)  ([3silt) sin l a x  - f ly)) .  0), 

(AI3) 

A .  J. WATKINSON 

The total perturbation velocity field is the sum of the two independent  
velocity fields. Note that: 

where l is the initial amplitude (Wollkind & Alexander  t982). In what 
follows, I is treated as an arbitrary constant. 

To solve for the z-dependent  parts of  equations (A12) and (A13), 
these equations are substituted into the Navier-Stokes equations 
(A8) - (AI  1) and solved for W and 0, giving: 

( 1 )  2 -- ¢ o 2 ) 2 W  = 0 (A15) 

and 

(1) 2 - 0 )2 )0  = 0. (AI6)  

Equat ion (AI5)  has the solution (Fletcher 1977, 199l, Alexander  
1981 ): 

W(z;0)) = [A + B(0)z  - l)]e . . . .  [C + D(0)z  + 1)]e .... . (A17) 

Equation (A16) is a second-order equation that has the general 
solution (Fletcher 1991): 

0(z;0)} = F e ' :  + G e  ,,,z. (AI8)  

From equations (A8)- (AI0) ,  (A17) and (AI8) ,  the perturbation 
velocity and pressure components  may be derived: 

wj = {[A + B(0)z  - 1)]e ...... [(7 + D ( w z  + 1)]e ..... } 

:d(t) cos l a x  - f ly )  {Al9a} 

Pl = 2w(Be ........ De ..... )M(t) cos l a x  - f ly )  (Al9b)  

u I = ( - a / 0 ) { [ A  + B0)z]e"': + [C + Dazzle  .. . . .  

- f l /0) ' - (b~ '":  + G e  .... })M(t) sin (ctx -- f ly )  (Al9c)  

vi = (13/~{IA + B0)zJe"': + [C + D0)z]e-" ' : }  

- a / 0 ) Z { F e  " :  + G e  ":}),~(t) sin lax  - fly), (Al9d)  

with equivalent expressions for the primed and double-primed quan- 
tities. 

The total flow (u, v, w) must  reduce to the basic [tow (1~, %,  w~}) far 
from the layer (see Ramberg  t962). 

v] ~-~ O, p'g -+ 0 as z---~ + ~ (A20a) 

a n d  

v'~---, 0. I/~ .... 0 as z--* - zc. (A20b) 

Satisfaction of these conditions (Fletcher 1991) requires that: 

A'  = B' = F'  = C '  = l)" =G"  = O, (A21) 

Furthermore,  imposing the symmetry requirements  discussed by 
Treagus (1973), Smith (1975) and Fletcher (1977, 1991), a fold-like 
disturbance requires that w I is even in z: 

W(z;0)) = W ( - z ; 0 ) )  (A22a) 

and 

SO 

and 

W'(z:0)) = W"(-z;0)) ,  (A22b) 

A = - C ;  B := D; F =  (;; A" = - C ' ;  B"=  D':  
(A23a-f) 

F " = G ' ,  

The velocities and pressures in the laycr arc then: 

-'L = {[A + B(0)z  - 1)le ....... [ ( - A )  + B(¢oz + 1)]e .... ~, 

,,~(t) cos (~x --- fly) (A24a) 

Pl = 20) (Be  ........ B e  "" : ) .~ ( t )  cos l ax  - f ly )  (A24b) 

tq = ( -a /0){[A + B0)z]e"'= + I ( - A )  + B0)z]e ..... } 

- [3/0):{Fe '''~ + Fe  .... })g/(t) sin l a x  - f ly )  (A24c) 

vj :: ( - f i / 0 ) { [ A  + H0)z]e": + I ( - A )  + B0)z]e .... } 

- cz/0):{Fe ''~ + F? ' "=})~( t )  sin l a x  - f ly ) ,  (A24d) 
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while those in the upper and lower media are: 

w[ = w'~ = ( - [ C '  + O'(~oz + 1)]e-~Z}~(t)cos ( a t -  fly) 
(A25a) 

p~ = p'~ = -2toD'e-~Z,~(t) cos ( a t  - fly) (A25b) 

u~ = u~ = ( - a / t o [ C '  + D'  wz]e -~z  - fl/to2G' e-~°z}~(t) sin ( a t  - fly) 

(A25c) 

v[ = v'~ = {fl/to[ C '  + D'  wz]e -~°z - ct/w2G' e-°~z} ~ ( t )  sin ( a t  - fly). 

(A25d) 

Substitution of (A24) and (A25) into the interfacial conditions 
(A 11) yields the following systems of equations (not writing out U(z), 
V(z),  P(z)  and W(z)  in full): 

~ t  = ~(t)(ez~ W(z)), W ' ( z )  W(z )  (A26a,b) + 

P'(z)  - 2 r ( D W ' ( z ) )  = P(z)  - 2 (DW(z ) )  (A26c) 

r(fl + D U ' ( z )  - a W ' ( z ) )  = fl + DU(z )  - a W ( z )  (A26d) 

r ( - c t  + D V ' ( z )  + f lW ' ( z ) )  = - a  + DV(z )  + f lW(z)  (A26e) 

U'(z)  = U(z), V' (z )  = V(z), (A26f,g) 

where D = d/dz. 
There are seven unknown constants A,  B, C',  D ' ,  F, G'  and I, and 

seven interfacial conditions at each interface with which to evaluate 
them. Due to the imposed symmetries the system at z = h is identical to 
the system at z = - h  and it is sufficient to examine the behavior of only 
one interface to determine the stability of the layer as a whole (Smith 
1975, Fletcher 1977, 1991, Wollkind & Alexander 1982). To evaluate 
the unknown constants the system of equations (A26), representing a 
system of linear homogeneous equations in the quantities A, B, C' ,  D' ,  
F, G ' ,  is solved yielding the secular equation given by equation (7) in 
the main text. 

Pinch-and-swell mode  

For a symmetric pinch-and-swell deformation the z-component of 
w I is odd (Smith 1975) and we have: 

-W(z,~) = W(-z;~o) (A27a) 

and 

- W ' ( z ; t o )  = W"(-z; to) ,  (A27b) 

which gives the relation for the constants in equation (A20): 

C = A;  D = - B ;  G = - F ;  A" = C';  B" = - D ' ;  and F" = - G ' ,  

(A28a-f) 

The perturbation velocities in the layer are then: 

w I = {[A + B(toz - 1)]e ~°z - [A - B(toz + 1)]e -'°z} 

.~(t) cos (o r  - fly) (A29a) 

Pl = 2w( Be~z + Be-~'z)s~(t) cos (ax - fly) (A29b) 

u I = ( - a k o { [ A  + Bwz]e ~z + [A - Bwz]e -°~z} 

- f l / to(Fe ~z - Fe-~°z}),~(t) sin (ax - fly) (A29c) 

v, = ([3/w([A + B~z l e  '°z + [A - BoJz]e -'°z} 

- a / w 2 { F e  ~ - F e - ' z } ) ~ ( t )  sin ( a t  - fly), (A29d) 

while those in the upper and lower media are 

w~ = w'~ = { - [ C '  - O ' ( w z  + l)]e-°~z}s~(t) cos (ax - fly) (A30a) 

p~ = p~ = - 2 t o D '  e-~'z~(t)  cos ( a t  - fly) (A30b) 

. . . . .  ( - a / w [ C '  + D'  wz]e -~z  - fl/w2G' e-~Z)s~(t) sin ( a t  - fly) U I - -  U 1 - -  

(A30c) 

v~ = v~ = (fl/w[C' + D'  wz]e . . . .  a /w2G'e- '~%~(t )  sin ( a t  - fly). 

(A30d) 

Proceeding in a fashion similar to the folding problem, substitution 
of equations (A29) and (A30) into the interfacial conditions yields a 
system of equations which may be solved to give the secular equation 
(10) in the main text. 


